
 Matthew Robinson

1

Component 02
Algorithms and programming

Sorting Algorithms and Searching Algorithms

© M
att

he
w R

ob
ins

on

SORTING ALGORITHMS

BUBBLE SORT

 Matthew Robinson

2

 Bubble sort is a brute force and iterative sorting algorithm where each adjacent item in the array is compared. If
the item on the right is less than the item on the left they are swapped. The last element of the array will be in the
correct place.

Process

1) Set swapMade variable to True.
2) While swapMade is True, make passes through the list:

 for all items list.LENGTH-2 (all but the last item):
o compare the first and the second item in the list:

 if the first item is greater than the second item, then they are not in order
– swap them and set swapMade variable to True; or

 if the first item is less than the second item, then they are in order; repeat
the comparison process until the end of the list is reached;

o when the end of the list is reached, begin another pass.
3) On the final pass, all of the items should be sorted and therefore swapMade will remain False

and the algorithm will finish.

Pseudocode

FUNCTION bubbleSort(list)

 swapMade = True

 WHILE swapMade == True

swapMade = False

FOR i=0 TO list.LENGTH – 2 // iterate through all but the last item

IF list[i] > list[i+1] THEN

temp = list[i+1]

list[i+1] = list[i]

list[i] = temp

swapMade = True

ENDIF

NEXT i

 ENDWHILE

 RETURN list

ENDFUNCTION

The algorithm can be improved by decrementing the number of items to be inspected on each pass, as these
missed items are assumed to be sorted.

Process

1) Set swapMade variable to True.
2) Set passes variable to list.LENGTH-2 (all but the last item)
3) While swapMade is True, make passes through the list:

 for all items, but the last item, in the list:
o compare the first and the second item in the list:

1. if the first item is greater than the second item, then they are not in order
– swap them and set swapMade variable to True; or

2. if the first item is less than the second item, then they are in order; repeat
the comparison process until the end of the list is reached;

o when the end of the list is reached, begin another pass;

 decrement the passes variable.
4) On the final pass, all of the items should be sorted and therefore swapMade will remain False

and the algorithm will finish.

© M
att

he
w R

ob
ins

on

SORTING ALGORITHMS

BUBBLE SORT

 Matthew Robinson

3

Pseudocode

FUNCTION bubbleSort(list)

 swapMade = True

 passes = list.LENGTH-2 // iterate through all but the last item

 WHILE swapMade == True

 swapMade = False

 FOR i=0 TO passes

 IF list[i] > list[i+1] THEN

 temp = list[i+1]

 list[i+1] = list[i]

 list[i] = temp

 swapMade = True

 ENDIF

 NEXT i

 passes = passes - 1

 ENDWHILE

 RETURN list

ENDFUNCTION

This improvement means that unnecessary passes are not made as the items at the end of the list do not need to
be compared since they are sorted.

© M
att

he
w R

ob
ins

on

SORTING ALGORITHMS

INSERTION SORT

 Matthew Robinson

4

Insertion sort is an iterative sorting algorithm that works by dividing a list into two parts: a sorted portion; and an
unsorted portion. The elements in the list are inserted, one at a time, into their correct position in the sorted
portion.

Process

1) Make the first item in the list the sorted portion of the list and the remaining items are the
unsorted portion of the list.

2) While there are items in the unsorted list:

 take the first item in the unsorted list;

 while there is an item to the left of the first item in the unsorted list:
o swap with that item;

 the sorted list is now one item bigger, as the first item of the unsorted list has become a
member of the sorted list.

Pseudocode

FUNCTION insertionSort(list)

 FOR i=0 TO list.LENGTH-1 // iterate through all but the last item

 currentItem = list[i] // take the first item in the unsorted list

 position = i // set the position to the current index value

 // while there are items in the unsorted list

 WHILE position > 0 AND list[position - 1] > currentItem

 // swap the items

 list[position] = list[position – 1]

 position = position – 1

 ENDWHILE

 list[position] = currentItem

 NEXT i

 RETURN list

ENDFUNCTION

© M
att

he
w R

ob
ins

on

SORTING ALGORITHMS

MERGE SORT

 Matthew Robinson

5

Merge sort is a divide and conquer sorting algorithm where the list recursively partitioned in to halves, until each
sublist is of length one, and therefore sorted by definition as the single item is the smallest and the largest in that
sublist. The sublists are then sorted and merged into larger sublists until they are recombined into a single sorted
list. The implementation of a merge sort is usually recursive as the way it solves the problem is inherently
recursive so it naturally lends itself to this style of implementation.

Process

1) The list is split into two halves.
2) For the left half:

 split the left half into halves until each sublist is of length one.

 merge the pair of sublists on the left half by repeating this process until all items are in
the merged list:

o comparing the first item in the left half with the first item in the right half;
o if the item in the left half is less than the item in the right half, add the item from

 the left half to the merged list and read the next item from the left half;
o if the item in the right half is less than the item in the left half, add the item from

 the right half to the merged list and read the next item from the right half;
o once either list is empty, any remaining items are added to the merged list.

3) For the right half:

 split the right half into halves until each sublist is of length one.

 merge the pair of sublists on the right half by repeating this process until all items are in
the merged list:

o comparing the first item in the left half with the first item in the right half;
o if the item in the left half is less than the item in the right half, add the item from

 the left half to the merged list and read the next item from the left half;
o if the item in the right half is less than the item in the left half, add the item from

 the right half to the merged list and read the next item from the right half;
o once either list is empty, any remaining items are added to the merged list.

4) Merge the left half and the right half by repeating this process until all items are in the merged
list:

 comparing the first item in the left half with the first item in the right half;

 if the item in the left half is less than the item in the right half, add the item from the left
half to the merged list and read the next item from the left half;

 if the item in the right half is less than the item in the left half, add the item from the right
half to the merged list and read the next item from the right half;

 once either list is empty, any remaining items are added to the merged list.

© M
att

he
w R

ob
ins

on

SORTING ALGORITHMS

MERGE SORT

 Matthew Robinson

6

Pseudocode

PROCEDURE mergeSort(list)

 // base case

 IF list.LENGTH > 1 THEN // if list is not, by definition, sorted

 mid = list.LENGTH DIV 2 // performs integer division to find

 the midpoint of the list

 leftHalf = mergeList[:mid] // left half of list

 rightHalf = mergeList[mid:] // right half of list

 // recursive case

 mergeSort(leftHalf) // recursive call for leftHalf

 mergeSort(rightHalf) // recursive call for rightHalf

 i = 0 // pointer to item in leftHalf (starting at the first item)

 j = 0 // pointer to item in rightHalf (starting at the first item)

 k = 0 // pointer to item in list (starting at the first item)

 // while the first item in the leftHalf is less than the length of the

 length of the leftHalf AND the first item in the rightHalf is less

 than the length of the rightHalf

 i.e. while there are still item in the leftHalf and rightHalf of the

 sublists

 WHILE i < leftHalf.LENGTH AND j < rightHalf.LENGTH

 // if the item at the pointer in the leftHalf is less than the item

 at the pointer in the rightHalf

 IF leftHalf[i]<rightHalf[j] THEN

 // the item at the pointer in leftHalf the becomes is added to

 the list

 list[k] = leftHalf[i]

 // increment the pointer pointing to the item in the leftHalf

 i = i + 1

 ELSE

 // the item at the pointer in rightHalf the becomes is added to

 the list

 list[j] = rightHalf[j]

 ENDIF

 // increment the pointer pointing to the item in the list

 k = k + 1

 ENDWHILE

 WHILE i < leftHalf.LENGTH

 mergeList[k] = leftHalf[i]

 // increment the pointer pointing to the item in the leftHalf

 i = i + 1

 // increment the pointer pointing to the item in the list

 k = k + 1

 ENDWHILE

 WHILE j < rightHalf.LENGTH

 mergeList[k] = rightHalf[j]

 // increment the pointer pointing to the item in the rightHalf

 j = j + 1

 // increment the pointer pointing to the item in the list

 k = k + 1

 ENDWHILE

 ENDIF

ENDPROCEDURE

© M
att

he
w R

ob
ins

on

SORTING ALGORITHMS

QUICK SORT

 Matthew Robinson

7

Quick sort is a divide and conquer sorting algorithm where a pivot value is used, such as the first item in the list.
The remainder of the list is divided into two partitions where: all elements less than the pivot value must be in the
first partition; and all elements greater than the pivot value must be in the second partition. The implementation
of a quick sort is usually recursive as the way it solves the problem is inherently recursive so it naturally lends
itself to this style of implementation.

Process

1) Select a pivot value, sometimes the first item in the list.
2) Locate the two position markers:

 set leftMark variable to the index of the second item in the list (after the pivot); and

 set rightMark variable to the index of the last item in the list.
3) Move the items which are less than or equal to the pivot to the left-hand side of the pivot and

move the items which are greater than the pivot to the right-hand side of the pivot:

 compare the pivot to the item at the leftMark and if the item at the leftMark is less than
pivot, increment the leftMark (move to the right) – repeat this until the pivot is greater
than the item at the leftMark.

 compare the pivot to the item at the rightMark and if the item at the rightMark is greater
than the pivot, decrement the rightMark (move to the left) – repeat this until the pivot is
less than the item at the rightMark.

4) Exchange the item at leftMark with the item at rightMark and repeat stage 3).
5) When rightMark < leftMark, the split point is at the position of the rightMark.
6) Exchange the item at the pivot with the item at the split point.
7) Divide the list at the split point and recursively quick sort each half.

© M
att

he
w R

ob
ins

on

SORTING ALGORITHMS

QUICK SORT

 Matthew Robinson

8

Pseudocode

FUNCTION partition(list, start, end)

 pivot = list[start] // set the pivot to point to the first item

 leftMark = start + 1 // set the leftMark to point to the item after the pivot

 rightMark = end // set the rightMark to point to the last item

 done = False // the split point has not been found

 WHILE done == False // while the split point has not been found

 // while the leftMark is less than or equal to the rightMark and the leftMark

 is less than or equal to the pivot

 WHILE leftMark <= rightMark AND list[leftMark] <= pivot

 // increment the leftMark

 leftMark = leftMark + 1

 ENDWHILE

 // while the rightMark is greater than or equal to the leftMark and the

 rightMark is greater than or equal to the pivot

 WHILE rightMark >= leftMark AND list[rightMark] >= pivot

 // decrement the rightMark

 rightMark = rightMark – 1

 ENDWHILE

 // if the pointer have swapped over

 IF rightMark < leftMark THEN

 // the split point has been found

 done = True

 ELSE

 // the split point has not been found so swap the items at the leftMark and

 the rightMark

 temp = list[leftMark]

 list[leftMark] = list[rightMark]

 list[rightMark] = temp

 ENDIF

 ENDWHILE

 // swap the item at the pivot with the item at the rightMark

 temp = list[start]

 list[start] = list[rightMark]

 list[rightMark] = temp

 // return the split point (rightMark)

 RETURN rightMark

ENDFUNCTION

FUNCTION quicksort(list, start, end)

 // base case

 IF start < end THEN

 // partition the list

 split = partition(list, start, end)

 // recursive case - quick sort the right half

 quickSort(list, start, split-1)

 // recursive case - quick sort the left half

 quickSort(list, split+1, end)

 ENDIF

 RETURN list

ENDFUNCTION

list = [9, 5, 4, 15, 3, 8, 11]

sortedList = quicksort(list, 0, list.LENGTH-1)

PRINT(sortedList)

© M
att

he
w R

ob
ins

on

 Matthew Robinson

9

SORTING ALGORITHMS

COMPARISON

 Bubble Sort Insertion Sort Merge Sort Quick Sort

Time
Complexity

Best Case
Linear
O(n)

Linear
O(n)

Logarithmic
O(n log n)

Logarithmic
O(n log n)

Average
Case

Polynomial
O(n2)

Polynomial
O(n2)

Logarithmic
O(n log n)

Logarithmic
O(n log n)

Worst
Case

Polynomial
O(n2)

Polynomial
O(n2)

Polynomial
O(n log n)

Polynomial
O(n2)

Space Complexity
(Auxiliary Worst Case)

Constant
O(1)

Constant
O(1)

Linear
O(n)

Logarithmic
O(log n)

Avoiding the worst case
time

Sort the list from
both directions.

Decrement the
number of items to
be inspected on
each pass, as these
missed items are
assumed to be
sorted.

- Cannot be
optimised because
it takes O(log n) to
break the array
down into the sub
lists and then O(n)
swaps are made.

Choosing an
appropriate pivot
value; a common
method is to use
the median of the
leftmark rightmark
and middle value of
the array as the
pivot value.

This is recalculated
on each recursive
call.

Coding difficultly
(1 – easiest, 4 – hardest)

1 2 3 4

Evaluation

Slowest but easiest
to code.

Polynomial time
complexity but
reduced to linear if
list is almost
sorted.

Worst case if data
is in descending
order.

Scales well since
logarithmic but
requires additional
memory space for
the merging
process.

Recursion could
lead to a stack
overflow if the list is
very large.

Generally fastest
but dependent on
using a pivot which
is not close to the
smallest or largest
elements of the list.

Rarely worst case
especially if pivot
value has been
chosen carefully.

Does not required
additional memory
space, operations
are completed “in
place”.

Number of comparisons is the same.

Less swaps made in insertion, thus less
writing.

 In a partially or fully
sorted list, bubble
or insertion may
actually be better
than merge sort
and they are
simpler to code.

© M
att

he
w R

ob
ins

on

SEARCHING ALGORITHMS

LINEAR SEARCH

 Matthew Robinson

10

Linear search is a brute force and iterative searching algorithm which sequentially checks each element of the list
to see if it matches the search criteria until a match is found or until all the elements have been searched.

Process

1) Set found variable to False.
2) Set index variable to 0.
3) While the item has not been found and the index is within range of the list:

 if the item at the current value of index is equal to the search criteria, set the found
variable to True and return the item at the current value of index;

 else, increment index.
4) If the item is not found, the index will become greater than the length of the list and the while

loop will finish, this means that the item has not been found.

Pseudocode

FUNCTION linearSearch(list, searchCriteria)

 found = False

 index = 0

 WHILE found = False AND index < list.LENGTH

 IF list[index] == searchCriteria THEN

 found = True

 RETURN list[index]

 ELSE

 index = index + 1

 ENDIF

 ENDWHILE

 RETURN “Item not found”

ENDFUNCTION

© M
att

he
w R

ob
ins

on

 Matthew Robinson

11

SEARCHING ALGORITHMS

BINARY SEARCH

Binary search is a divide and conquer iterative searching algorithm which works by repeatedly dividing in half the
portion of a list which contains the required data item until there is only one item in the list. This can also be
implemented recursively.

Process

1) Set found variable to False.
2) Set lowerBound variable to 0.
3) Set upperBound variable to list.LENGTH-1 (index of the last item).
4) While the item has not been found and the lowerBound is less than or equal to the upperBound:

 calculate a midpoint by doing floor division of the sum of lowerBound and upperBound;

 if the item at the midpoint is equal to the search criteria, set found to True;

 if the item at the midpoint is less than the search criteria, set the lowerBound to midpoint
+ 1;

 if the item at the midpoint is greater than the search criteria, set the upperBound to
midpoint – 1.

5) Return the found variable.

Pseudocode

FUNCTION binarySearch(list, searchCriteria)

 found = False

 lowerBound = 0

 upperBound = list.LENGTH-1

 WHILE found == False AND lowerBound <= upperBound

 midPoint = (lowerBound + upperBound) DIV 2

 IF list[midPoint] == searchCriteria THEN

 found = True

 ELIF list[midPoint] < searchCriteria THEN

 lowerBound = midPoint + 1

 ELSE

 upperBound = midPoint – 1

 ENDWHILE

 RETURN found

ENDFUNCTION

 © M

att
he

w R
ob

ins
on

 Matthew Robinson

12

SEARCHING ALGORITHMS

COMPARISON

 Linear Search Binary Search

Time
Complexity

Best Case
Constant

O(1)
Constant

O(1)

Average
Case

Linear
O(n)

Logarithmic
O(log n)

Worst
Case

Linear
O(n)

Logarithmic
O(log n)

Space Complexity
(Auxiliary Worst Case)

Constant
O(1)

Constant
O(1)

Avoiding the worst case
time

Cannot be
optimised.

Can be
implemented
recursively. This
could be
considered the
optimum
implementation as
it is naturally
recursive.

Coding difficultly
(1 – easiest, 4 – hardest)

1 2

Evaluation

Works on any data
set.

If the item is the
last in the list, then
it will take O(n).

More suited to
smaller data sets.

The data set must
be in order.

Very efficient even
if list is large.

If data isn’t sorted,
consider the
complexity of a
sorting algorithm.

© M
att

he
w R

ob
ins

on

